skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Won"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available February 1, 2026
  4. Abstract. Ice shelf dynamics and morphology play an important role in the stability of floating bodies of ice by driving fracturing that can lead to calving, in turn impacting the ability of the ice shelf to buttress upstream grounded ice. Following a 2016 calving event at the Nansen Ice Shelf (NIS), East Antarctica, we collected airborne and ground-based radar data to map ice thickness across the shelf. We combine these data with published satellite-derived data to examine the spatial variations in ice shelf draft, the cause and effects of ice shelf strain rates, and the possibility that a suture zone may be channelizing ocean water and altering patterns of sub-ice-shelf melt and freeze-on. We also use our datasets to assess limitations that may arise from relying on hydrostatic-balance equations applied to ice surface elevation to determine ice draft morphology. We find that the Nansen Ice Shelf has a highly variable basal morphology driven primarily by the formation of basal fractures near the onset of the ice shelf suture zone. This morphology is reflected in the ice shelf strain rates but not in the calculated hydrostatic-balance thickness, which underestimates the scale of variability at the ice shelf base. Enhanced melt rates near the ice shelf terminus and in steep regions of the channelized suture zone, along with relatively thin ice in the suture zone, appear to represent vulnerable areas in the NIS. This morphology, combined with ice dynamics, induce strain that has led to the formation of transverse fractures within the suture zone, resulting in large-scale calving events. Similar transverse fractures at other Antarctic ice shelves may also be driven by highly variable morphology, and predicting their formation and evolution could aid projections of ice shelf stability. 
    more » « less
  5. Oxygen plasma treatment of polydimethylsiloxane (PDMS) induces an ultrathin polyorganosilica (POSi) layer (< 10 nm) on top of a PDMS membrane, leading to excellent H2/gas separation properties and providing a rapid and scalable way to fabricate robust silica membranes compared with conventional high-temperature and time-consuming sol-gel methods. Here, we thoroughly investigate POSi membranes derived from poly(dimethylsiloxane-co-methylhydroxidesiloxane) (poly(DMS-co-MHOS)) containing -SiOH groups that can be more easily converted to silica networks than the -SiCH3 in PDMS. The effect of the polysiloxane structure and plasma treatment conditions (including plasma generating powers, oxygen flowrate, chamber pressure, and treatment time) on the silica chemistry, structure, and H2/CO2 separation properties are systematically determined to derive structure/property relationships. An optimized membrane exhibits H2 permeance of 880 GPU and H2/CO2 selectivity of 67 at 150 ℃, superior to state-of-the-art polymeric membranes. The membrane retains H2/CO2 selectivity as high as 46 when challenged with simulated syngas containing 2.8 mol% water vapor at 150 ℃, demonstrating the potential of these POSi membranes for practical applications. 
    more » « less
  6. Abstract Pine Island Ice Shelf (PIIS) buttresses the Pine Island Glacier, the key contributor to sea-level rise. PIIS has thinned owing to ocean-driven melting, and its calving front has retreated, leading to buttressing loss. PIIS melting depends primarily on the thermocline variability in its front. Furthermore, local ocean circulation shifts adjust heat transport within Pine Island Bay (PIB), yet oceanic processes underlying the ice front retreat remain unclear. Here, we report a PIB double-gyre that moves with the PIIS calving front and hypothesise that it controls ocean heat input towards PIIS. Glacial melt generates cyclonic and anticyclonic gyres near and off PIIS, and meltwater outflows converge into the anticyclonic gyre with a deep-convex-downward thermocline. The double-gyre migrated eastward as the calving front retreated, placing the anticyclonic gyre over a shallow seafloor ridge, reducing the ocean heat input towards PIIS. Reconfigurations of meltwater-driven gyres associated with moving ice boundaries might be crucial in modulating ocean heat delivery to glacial ice. 
    more » « less
  7. Abstract The ability to efficiently and selectively process mixed polymer waste is important to address the growing plastic waste problem. Herein, we report that the combination of ZnCl2and an additive amount of poly(ethylene glycol) under vacuum can readily and selectively depolymerize polyesters and polycarbonates with high ceiling temperatures (Tc>200 °C) back to their constitute monomers. Mechanistic experiments implicate a random chain scission mechanism and a catalyst structure containing one equivalent of ZnCl2per ethylene glycol repeat unit in the poly(ethylene glycol). In addition to being general for a wide variety of polyesters and polycarbonates, the catalyst system could selectively depolymerize a polyester in the presence of other commodity plastics, demonstrating how reactive distillation using the ZnCl2/PEG600 catalyst system can be used to separate mixed plastic waste. 
    more » « less